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ABSTRACT 

Transport of carbon dioxide (CO2) via pipeline from the point of capture to a geologically 

suitable location for either sequestration or enhanced hydrocarbon recovery is a vital aspect 

of the carbon capture and storage (CCS) chain. This means of CO2 transport has a number of 

advantages over other means of CO2 transport, such as truck, rail, and ship. Pipelines ensure 

continuous transport of CO2 from the capture point to the storage site, which is essential to 

transport the amount of CO2 captured from the source facilities, such as fossil fuel power 

plants, operating in a continuous manner. Furthermore, using pipelines is regarded as more 

economical than other means of CO2 transport  

The greatest challenges of CO2 transport via pipelines are related to integrity, flow assurance, 

capital and operating costs, and health, safety and environmental factors. Deployment of CCS 

pipeline projects is based either on point-to-point transport, in which case a specific source 

matches a specific storage point, or through the development of pipeline networks with a 

backbone CO2 pipeline. In the latter case, the CO2 streams, which are characterised by a 

varying impurity level and handled by the individual operators, are linked to the backbone CO2 

pipeline for further compression and transport. This may pose some additional challenges.  

This review involves a systematic evaluation of various challenges that delay the deployment 

of CO2 pipeline transport and is based on an extensive survey of the literature. It is aimed at 

confidence-building in the technology and improving economics in the long run. Moreover, the 

knowledge gaps were identified, including lack of analyses on a holistic assessment of 

component impurities, corrosion consideration at the conceptual stage, the effect of elevation 

on CO2 dense phase characteristics, permissible water levels in liquefied CO2, and commercial 

risks associated with project abandonment or cancellation resulting from high project capital 

and operating costs.  
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1 Introduction 

1.1 Background 

The latest Intergovernmental Panel on Climate Change (IPCC) report revealed that 

anthropogenic greenhouse gas emissions have remained the dominant cause of global 

warming and climate change since the 1950s, and warned that this trend will continue to 

intensify if anthropogenic CO2 emissions are not abated [1]. Similarly, one of the key outcomes 

of the COP21 agreement is to keep the mean earth temperature below 2°C above pre-

industrial levels and a further commitment to decrease it to below 1.5°C by 2050 [2]. Knoope 

et al. [3] reported that to mitigate drastic climate change, global CO2 emissions should be cut 

by 50-85% compared to 2000 emission levels. Yet, the worldwide emissions from combustion 

of fossil fuels climbed to an all-time high of 34 GtCO2 in 2011 [4]. Furthermore, 32 GtCO2 was 

emitted in 2015, as reported by Kennedy et al. [5], showing a partial decoupling between the 

growth in global CO2 emissions and that of the global economy [6]. It has been also reported 

that reduction in the CO2 emission will put a ceiling on the mean earth temperature increase 

of between 2 and 2.4°C [7–9].  

Importantly, the power sector of 2050 is expected to rely primarily on renewable energy 

sources (RES), with support from fossil fuel power generation with CO2 capture and storage 

(CCS), and nuclear power plants [10]. However, differences in operating patterns, and hence 

interaction between these technologies, will affect the operation of the energy network [11,12]. 

Although CCS is expected to impose significant efficiency and economic penalties [13], and 

cannot be perceived as an ultimate solution to climate change, its integration to the fossil fuel 

power plant fleet will act, at least, as a bridge to a clean, reliable and sustainable energy supply 

[14].  

Different countries continue to strike a balance between the need to mitigate climate change 

by reducing CO2 emission and utilisation of fossil fuels for power generation and industrial 

processes. For this reason, fossil fuels constitute a substantial share in the global energy mix 

[15–19]. Obviously, there is some tension between the two views on the future shape of the 

global energy system. One is advocating the necessity to cut CO2 emissions and the other 

promotes continued operation of fossil fuel power plants and carbon-intensive industrial 

processes. In the latter case, it is considered that these carbon-intensive processes are 

imperative for the maintenance of both the competitive economies and a high living standard 

[20–26].  
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With the continued consumption of fossil fuels, considerable and continuous reduction in the 

amount of CO2 emission from power and industrial plants can be achieved through CCS 

technology [27–30]. The CCS chain has been applied for enhanced oil recovery (EOR) for 

many years, but its application for climate change mitigation has only been considered recently 

[31]. In the CCS chain, CO2 is captured from large-scale emitters, such as fossil fuel power 

plants, using various CO2 capture and separation technologies, compressed and purified, and 

finally transported to a storage site, where it is injected underground and usually stored in a 

depleted oil andgas reservoir or deep saline aquifer for a long period of time. Depending on 

the CO2 phase, its transport can be carried out via a pipeline (dense phase) or by trucks, rail, 

and ships (liquid phase) (Figure 1). 

 

Figure 1: Liquefaction and compression transport schemes (Adapted from Spinelli et 

al. [32]. Copytright 2012 The International Society of Offshore and Polar Engineers) 

The approach employed in most CCS demonstration projects to date, such as the Boundary 

Dam, Petra Nova, and ROAD projects, is mainly based on point-to-point transport. The 

exceptions are the projects that utilise existing pipelines, includingin oil and gas or EOR 

pipelines. EOR is a process that has been in use for decades to improve hydrocarbon recovery 

from oil reservoirs. In this process, high-pressure CO2 is injected into the reservoir to increase 

its pressure, thereby improving its hydrocarbon yield. 
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Importantly, transport of CO2 via pipelines has a number of advantages over other means of 

CO2 transport, including transport by trucks, rail, and ships. CO2 transport to a suitable place 

for sequestration, in terms of space and secure storage, usually requires the use of pipelines, 

especially where continuous flow from the CO2 capture facility is required [33]. Furthermore, 

pipelines allow transporting a larger amount of CO2, which could have been captured from a 

number of point sources, over long distances in a more economic manner compared to other 

means of CO2 transport. There are, however, a number of challenges for CO2 transport via 

pipelines that must be resolved for successful deployment of CCS systems. Although these 

challenges are unlikely to prevent complete deployment of the system [21], this means of 

transport is regarded as a high-risk component of the CCC chain [34,35] (Figure 2). 

 

Figure 2: Potential supply chain constraints (Adapted from International Energy Agency 

Greenhouse Gas Programme [35]. Copyright 2012 The International Energy Agency) 

1.2 Overview of CO2 transport via pipelines 

Pipeline engineering with reference to hydrocarbon transport has a long history. Namely, there 

is considerable experience in the field of oil and gas transport, including EOR enhanced oil 

recovery [16,32,36]. However, transporting CO2 streams containing impurities, as opposed to 

pure CO2 streams, imposes additional challanges. Several studies highlighted that various 

issues should be considered when it comes to the transport of captured CO2 containing 

impurities, such as operating pressure, repressurisation intervals and pipe integrity. This is 

irrespective of the mode of transport, whether in gaseous, liquid or supercritical phases across 

a difficult terrain [15,16,32,36–40].   

In the US, pure CO2 is regularly transported via onshore pipelines over long distances [41]. 

Most of these CO2 pipelines were designed purposely for EOR [40]. Although some CCS 
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projects consider CO2 transport from fossil fuel power plants or other industrial sources, the 

majority of CO2 that is being transported comes from natural sources  [37,42–46]. It has been 

reported that CO2 with impurities is transported via pipeline systems in the US and Canada. 

An example of such system is the 325 km pipeline transporting CO2 that contains ~0.9% 

hydrogen sulphide (H2S) from a North Dakota, US, gasification plant to Saskatchewan, Canada 

for EOR. Importantly, such onshore CO2 pipeline systems have been operational for more than 

30 years without any significant incidents caused by corrosion [47,48]. However, there is a lack 

of extensive experience of CO2 transport via offshore pipelines over long distances.  

Over the last decade, there has been slow but steady progress in the development of large 

scale industrial processes (LSIP) CCS projects. Several authors have shown insights into the 

design of pipelines and the operational philosophy for CO2 streams from some of the first 

generation LSIP at active and planned stages [49,50]. There exist seventeen operational 

industrial-scale CCS projects (Table 1). These projects have the capacity for capturing, 

transporting and storing 31.2 Mtpa of CO2. Additionally, it is expected that by 2018, five more 

LSIP CCS projects will become operational, resulting in a total of 22 CCS projects in operation 

with the capacity of 40.6 Mtpa of CO2 [49]. 

 

  



 

 

6 

Table 1: Large-scale industrial CCS projects in operation (Reproduced from Global CCS Institute [49]. Copyright Global CCS Institute 

2017) 

Project Name Location 
Operation 
date 

Industry Capture type 
Capture capacity 
(Mtpa) 

Transport type Primary storage 

Terrell Natural Gas Processing Plant 
(formerly Val Verde Natural Gas Plants) 

United States 1972 Natural Gas 
Processing 

Pre-combustion capture 
(natural gas processing) 

0.4 - 0.5 Pipeline Enhanced oil recovery 

Enid Fertilizer CO2-EOR Project United States 1982 Fertiliser Production Industrial Separation 0.7 Pipeline Enhanced oil recovery 

Shute Creek Gas Processing Facility United States 1986 Natural Gas 
Processing 

Pre-combustion capture 
(natural gas processing) 

7 Pipeline Enhanced oil recovery 

Sleipner CO2 Storage Project Norway 1996 Natural Gas 
Processing 

Pre-combustion capture 
(natural gas processing) 

1 No transport required 
(direct injection) 

Dedicated Geological 
Storage 

Great Plains Synfuels Plant and Weyburn-
Midale Project 

Canada 2000 Synthetic Natural Gas Pre-combustion capture 
(gasification) 

3 Pipeline Enhanced oil recovery 

Snøhvit CO2 Storage Project Norway 2008 Natural Gas 
Processing 

Pre-combustion capture 
(natural gas processing) 

0.7 Pipeline Dedicated Geological 
Storage 

Century Plant United States 2010 Natural Gas 
Processing 

Pre-combustion capture 
(natural gas processing) 

8.4 Pipeline Enhanced oil recovery 

Air Products Steam Methane Reformer 
EOR Project 

United States 2013 Hydrogen Production Industrial Separation 1 Pipeline Enhanced oil recovery 

Coffeyville Gasification Plant United States 2013 Fertiliser Production Industrial Separation 1 Pipeline Enhanced oil recovery 

Lost Cabin Gas Plant United States 2013 Natural Gas 
Processing 

Pre-combustion capture 
(natural gas processing) 

0.9 Pipeline Enhanced oil recovery 

Petrobras Santos Basin Pre-Salt Oil Field 
CCS Project 

Brazil 2013 Natural Gas 
Processing 

Pre-combustion capture 
(natural gas processing) 

1 No transport required 
(direct injection) 

Enhanced oil recovery 

Boundary Dam Carbon Capture and 
Storage Project 

Canada 2014 Power Generation Post-combustion capture 1 Pipeline Enhanced oil recovery 

Quest Canada 2015 Hydrogen Production Industrial Separation 1 Pipeline Dedicated Geological 
Storage 

Uthmaniyah CO2-EOR Demonstration 
Project 

Saudi Arabia 2015 Natural Gas 
Processing 

Pre-combustion capture 
(natural gas processing) 

0.8 Pipeline Enhanced oil recovery 

Abu Dhabi CCS Project (Phase 1 being 
Emirates Steel Industries (ESI) CCS 
Project) 

United Arab 
Emirates 

2016 Iron and Steel 
Production 

Industrial Separation 0.8 Pipeline Enhanced oil recovery 

Illinois Industrial Carbon Capture and 
Storage Project 

United States 2017 Chemical Production Industrial Separation 1 Pipeline Dedicated Geological 
Storage 

Petra Nova Carbon Capture Project United States 2017 Power Generation Post-combustion capture 1.4 Pipeline Enhanced oil recovery 
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Out of the seventeen LSIP CCS projects currently in operation, two are for power generation, 

nine are for gas processing, and six are for production of iron and steel, chemicals (fertilisers 

and ethanol) and fuels (hydrogen). Regarding the type of CO2 capture process, the power 

generation projects apply a post-combustion technology, while the gas processing plants 

usethe pre-combustion technology. Also, the separation of CO2 from industrial processes is 

applied to the iron and steel, chemical, and hydrogen plants. It is important to mention that 

none of the LSIPs in operation utilises oxy-fuel combustion technology. Finally, fifteen LSIPs 

use pipeline as the mode of CO2 transport. 

1.3 Challenges of CO2 transport via pipelines  
Transportation of CO2 via pipeline faces several technical and economic challenges that range 

from techno-economic, pipeline design, flow assurance, pipeline integrity, through to 

safeguarding and safety. 

A large amount of CO2 can be efficiently transported via pipeline if it is in the supercritical 

(dense) phase. CO2 in the dense phase is particularly sensitive to the existence of steep 

elevations and impurities. This does not only impact on the repressurisation distance in the 

pipeline system, but also affects the fluid dynamics and thermodynamic behaviour of the CO2 

stream, resulting in different flow regimes that alter the pipeline operating conditions [38,51–

59]. Detailed consideration is required to get the optimal pipeline sizing, distance before 

repressurisation, and the number of pumps/size of pumping or compressor stations, as well as 

their energy requirements [27,60–63]. 

Presently, the overall construction cost of CO2 pipelines is high when cost-benefit analysis is 

taken into consideration [64–66]. A high cost of CO2 pipeline infrastructure development and 

implementation makes it necessary to develop a framework for economic evaluation of carbon 

capture and transport (CCT) chains in terms of total project and operating costs. This 

framework would be able to assess the cost of both multiple small-capacity pipelines, the single 

large-capacity pipeline, and the increasing-capacity pipeline [3,67–69]. Furthermore, 

understanding and addressing corrosion issues in terms of low pH and the effect of corrosion 

inhibitor in the preservation of the pipeline integrity and life extension are important in relation 

to the annual operating cost [70–76]. Finally, modelling and simulation of CO2 transport via 

pipeline are carried out with a considered objective function to estimate a total annualised cost 

including investment and operating andmaintenance costs [77]. Despite many publications 

addressing a number of challenges of CO2 transport via pipelines, so far, there has not been 

one that has critically reviewed most of these aforementioned issues.  
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The challenges related to CO2 transport via pipelines have been addressed by a number of 

publications that focused on specific subjects, such as identification of risks and estimation 

uncertainty, cost estimation using techno-economic models, as well as assessment of 

operation and design aspects of the CO2 pipeline system [3,78–80]. This review aims at 

gathering the information on potential challenges of the CO2 transport via piplelines to identify 

uncertainties and knowledge gaps that need to be addressed to ensure timely deployment of 

the complete CCS chain at large scale. The objective is to support reduction of the high level 

of uncertainty associated with CO2 pipeline transport resulting from limited information 

availability. The review attempts to narrow the lack of understanding of what the outcome of 

CO2 pipeline projects will be. Information availability enables the industry to evaluate the 

severity and relevance of uncertainties in order to target the high-uncertainty areas with 

relevant mitigation strategies. Sizable differences in the techno-economic cost models of CO2 

pipelines reviewed have shown that these differences can translate into projects costing tens 

of millions of pounds more than initially estimated. This review compares the most relevant 

techno-economics models such as MIT, Ecofys, McCoy and Rubin, and Ogden with a 

mathematical simulation tool, Aspen Process Economic Analyser (APEA) [77]. Furthermore, 

an assessment of the importance of an early introduction of mitigation measures against the 

risk of corrosion at the project conceptual and implementation stages is evaluated. Finally, the 

impact of the impurities in the CO2 stream on the performance of the pipeline system is 

assessed [24,40,81–87]. 

2  CO2 properties in pipeline transport   

2.1 Thermodynamic properties  

Impurities contained in the CO2 stream impact on the design and operation of the pipeline 

system. Therefore, knowledge of the thermodynamic properties with regard to the relationship 

between pressure, volume, temperature and their combined effects is important. At the triple 

point (5.2 bar, -56 °C), CO2 can exist as solid, liquid or gas. However, at temperatures and 

pressures beyond the critical point (74 bar, 31 °C), CO2 is in the supercritical phase. 

Importantly, the presence of impurities in the CO2 stream alters the cricondenbar, which is the 

highest pressure on the phase diagram. This affects the operating pressure range and 

increases the possibility of two-phase flow in the CO2 transport pipeline [45,88–90]  
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Figure 3: Phase envelopes for pure CO2 and CO2 mixtures (Reproduced from Wang et 

al. [37]. Copyright Elsevier 2011) 

Experimental data on binary mixtures of CO2 with other impurities are widely available  [91–

93]. However, most of the experiments were focused on CO2/H2O, CO2/CH4, CO2/N2, and 

CO2/H2S, whilst only a few involved effects of O2, SO2 and Ar that may be present in the CO2 

stream captured from the fossil fuel power plants. The presence of impurities alters the critical 

pressure of the CO2 stream due to the differences in the vapour pressure of various constituent 

species (Figure 3), and thus affects the repressurisation distance along the CO2 transport 

pipeline. To alleviate the impact of impurities on the possibility of two-phase flow, the operating 

pressure of the CO2 transport pipeline needs to be increased and suitable points of 

repressurisation need to be identified [82,94–102]. 

2.2 Transport properties  

As can be seen in Figure 4, a small alteration in the working conditions close to the CO2 critical 

point can result in a significant change in CO2 density. For example, the density will double for 

a decrease of about 10°C from the critical temperature. 
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Figure 4: Variation of carbon dioxide density with temperature (Reproduced from Global 

CCS Institute [15]. Copyright Global CCS Institute 2013)  

This has both technical and cost implications on the hydraulic system of CCS pipeline systems 

[82,94,103–105]. To keep the CO2 stream at the supercritical phase throughout the CO2 

transport pipeline, a pump-based system is recommended for flow repressurisation 

[33,106,107]. Furthermore, the variation in the pipeline depth can be expected to induce 

changes in the temperature and pressure of the CO2 stream, as a result of differences in the 

surrounding pressure, especially in a marine environment [108]. 

The design and establishment of CO2 transport pipelines are dependent on several factors 

such as viscosity and thermal conductivity, and these influence calculation of its hydraulic 

properties, as well as its ability to transfer heat [94,109]. Figure 5 shows that the viscosity of 

pure CO2 decreases with increase in temperature and reduces further with the presence of 

impurities. Importantly, the reduction in CO2 viscosity increases the efficiency of transport 

along the pipeline, as the pressure losses throughout the pipeline are reduced. 
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Figure 5: Effect of impurities and temperature on CO2 stream viscosity at 100 bar 

(Reproduced from Lucci et al. [110]. Copyright International Society ofOffshore and 

Polar Engineers 2011)  

2.3 Impurities in CO2 streams from CCS  

Flue gas is a product of fossil fuel combustion, mainly containing N2, CO2, H2O and O2 due to 

excess air in the combustion process. Nitrogen-containing impurities primaly include oxides, 

such as NO and NO2, which are collectively known as NOx. Other potential impurities are 

oxides of sulphur (SO2, SO3) commonly referred to as SOx, and hydrogen sulphide (H2S). Thus, 

the likely impurities in the CO2 stream separated from coal-fired power plant flue gas are NOx, 

SOx, H2O, O2 and H2S [56,111]. For example, Chapoy et al. [28], identified various gaseous 

impurities that exist in the CO2 stream as N2, O2, SO2, CH4, H2O, CO, and H2S. Importantly, 

operating conditions of CO2 transport pipelines, such as pressure, differ depending on whether 

the pipeline is located within the onshore or offshore environment. For this reason, these 

pipelines need to be managed under stringent control of contaminants [48,112,113]; for 

example the Dynamis project recommended levels of impurities for CO2 transport via pipeline 

as shown in Table 2.  
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Table 2: CO2 quality recommendation for transport from Dynamis project [114] 

Component Concentration Limitation 

H2O 500 ppm Technical: below solubility limit of H2O in CO2, no significant cross effect 

of H2O and H2S, cross effect of H2O and CH4 is significant but within 

limit for water solubility 

H2S 200 ppm  Health and Safety considerations 

CO 200 ppm Health and Safety considerations 

O2 Aquifer < 4 vol%. EOR 

100-1000 ppm 

Technical: range for EOR, because of lack of practical experiments on 

the effects of O2 underground 

CH4 Aquifer < 4 vol%. EOR 

< 2 vol% 

Health and Safety considerations 

N2 < 4 vol% (all non-

condensable gases) 

As proposed in ENCAP project 

Ar < 4 vol% (all non-

condensable gases) 

As proposed in ENCAP project 

H2 < 4 vol% (all non-

condensable gases) 

Further reduction of H2 is recommended because of its energy content 

SOx 100 ppm Health and Safety considerations 

NOx 100 ppm Health and Safety considerations 

CO2 > 95.5% Balance with other compounds in CO2 

It has been shown that there are significant differences in the amounts and types of 

contaminants in the CO2 stream transported by different operators [26,43,113]. Notably, the 

key influencing factors are the differences in CO2 capture and separation technology, as well 

as fuel used at the CO2 source as shown in Table 3 [41,115,116]. Potential impurities in CO2 

streams captured from a coal-fired power plant using the monoethanolamine (MEA) process 

were widely examined [43,56,117]. These studies concluded that in order to give a complete 

account of impurities in the CCS processes, there is need to consider various technologies 

employed for CO2 separation and likely impurities to be expected from those technologies 

[118,119].  
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Table 3: Expected Impurities from different CO2 capture technologies [120]  

 
Impurities 
 

Post-  
Combustion 
 

Oxy-fuel 
Combustion 
 

Pre-Combustion 
 

CO2 >99% >90% >95.6% 
O2 <0.1% <3% trace 

H2O 0.14% 0.14% 0.14% 
H2 trace trace <3% 

H2S trace trace <3.4% 
CH4 <0.01% - <0.035% 
N2 <0.8% <1.4% balance 
Ar trace <5% <0.05% 

SOx <0.001% <0.25% - 
NOx <0.001% <0.25% - 

Free water (H2O) in the CO2 stream is considered as the most undesirable of impurities. This 

is because it can result in hydrate formation in the CO2 transport pipeline, as well as react with 

most of the acidic gas impurities. As a result, the presence of free water can lead to corrosion 

problems under an enabling environment, for example, a suitable pressure and temperature 

[43]. Consequently, in the case of transporting CO2 for EOR, Kinder Morgan adopted certain 

stringent conditions that help limit the level of contaminants which include: no free water, < 20 

ppm H2S, < 35 ppm SOx, < 4% N2, < 5% CH4 [48,121]. Connell [19] reported a requirement to 

limit the free water content to < 600 ppm for certain operations. Table 3 shows levels of 

impurities from different CO2 capture processes employed in CCS demonstration projects. In 

the same vein, Thomas and Benson [121] reported that at Sleipner Vest, operated by the 

Norwegian-based company Statoil in the North Sea, the water content for the first compression 

state is 3.9%mol and at the third stage it is 0.3%mol. 

It has been reported that the presence of other impurities, such as CH4, N2, H2O and amines 

in the CO2 stream affects the solubility of H2O [111,121]. Similarly, Yang et al. [122] noted a 

considerable reduction in water solubility in the liquid phase when 5% CH4 was added. The 

presence of free water is significant in CO2 transport because free water may result in a phase 

split that, in turn, could trigger hydrate formation and pipe blockage, as well as pipeline 

corrosion. Moreover, Choi et al. [123] reported that water solubility in CO2 drops sharply as 

pressure increases between 50-60 bar and then shows a rapid increase with stabilisation at 

60-80 bar. However, it can be observed from Figure 6 that the CO2 solubility in water increases 

considerably after the change of CO2 phase from gaseous to liquid. Yet, it is essential to 

understand the difference in the impurities content among different phases during pressure 

drop, especially when free water is readily available [124]. Unfortunately, as claimed by Ruhl 

and Kranzmann [125], the impurities in the CO2 stream are a vital subject with regard to 

supercritical CO2 transport that is not totally understood at present. 



 

 

14 

 

Figure 6: Solubility of water in pure CO2 as a function of pressure and temperature 
(Reproducedf from de Visser et al. [126]. Copyright Elsevier 2008)  

2.4 Preferred conditions for CO2 transport 

The amount of CO2 transported via pipeline is highest in the supecritical phase as a result of 

its high density in this phase in comparison with other phases  [28,99,124,127,128]. 

Furthermore, transport of CO2 in the supercritical phase is regarded as the most cost effective 

method of transport from the CO2 capture point to the point of its utilisation or storage via 

pipeline [84,96,129–131]. The amount of CO2 transported per unit volume is maximised in this 

phase because the supercritical fluid possesses the density of a liquid and the viscosity of a 

gas (Figure 7) [45,132] . 

 

Figure 7: Operating conditions for CO2 transport pipeline (Reproduced from Cole et al. 

[43]. Copyright Elsevier 2011) 
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However, for the captured CO2 to be transported in the supercritical phase, it has to be 

compressed to a a pressure that is higher than the critical pressure [43,133], in order to prevent 

two-phase flow in the CO2 transport pipeline [134]. The condition under which CO2 is 

transported to the storage site is primarily dependent upon the availability of the means of CO2 

transport, such as a ship, truck or pipeline. Yet, some authors  are of the opinion that the 

amount of CO2 to be transported along with the distance between the CO2 capture facility and 

storage siteshould be considered in order to determine the most economically feasible mode 

of transport [64,135,136]. As identified above, the presence and type of impurities influence 

the properties of the CO2 fluid. The power requirement for compression of a CO2 stream with 

impurities is higher than that to that for pure CO2. This is a result of an increase in the critical 

pressure of the mixture with an increase in the impurities content. In the same vein, it is 

believed that if the CO2 stream with impurities reaches a two-phase situation along the pipeline, 

there will be a larger drop in pressure compared to the pure CO2 stream [39,45,57,93,137] 

Finally, Cole et al. [43] reported that the CO2 transport pressure ranges between 50 to 100 bar. 

This is consistent with a study by Spycher et al. [138] who found that at the pressures of 50 

tob 100 bar, water solubility limit is restricted from 0.3 x10-2 to 0.4 x10-2 (mole basis). 

Commenting on the issue of free water condensation, Thomas and Kerr [44] stated that before 

the transportation of CO2 via a pipeline, effort should be made to purify, dehydrate and 

compress it to a supercritical pressure of 145 bar. 

In summary, there has been considerable work carried out on the effect of each impurity on 

both critical point and pipeline repressurisation distances. Most research on the effect of 

impurities on the thermodynamics of transported CO2 is largely based on mono, binary and 

ternary considerations. For this reason, it is essential to quantify the holistic impacts of CO2 

impurities on transport line performance. This should be conducted at different impurity 

contents, for example, up to 20%.   

 

3 CO2 pipeline design 

3.1 Pipeline sizing, design and network configuration  

Determination of a pipe diameter for a particular project may involve one, two or three steps, 

in addition to other considerations. These steps include engineering calculation using 

correlations available in the literature, benchmarking the results with well-tested data from a 

similar project, and a hydraulic analysis. 
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In estimating the costs of the CO2 transport pipeline, consideration of the pipeline diameter is 

a critical factor [139]. This is because when considering the substantial lengths of CO2 

pipelines, a miscalculation in the optimum diameter can result in incurring an additional capital 

cost that could have been avoided. In this regard, several sources indicated that consideration 

of technical factors, such as material roughness, flow rate, pressure drop per unit length, 

viscosity/density of the fluid and differences in topography, are necessary for determination of 

the appropriate diameter [84,139–141]. 

To obtain all the specific requirements for CO2 pipeline design and sizing, an integrated 

approach needs to be adopted [68,82,119,140,142]. A reliable method for design of the CO2 

transport pipeline in detail considers the effect of both the environment (soil or water) 

temperature and CO2 flow rate on pipeline diameter and length. Furthermore, the design 

procedure includes hydraulic analysis to estimate the optimum pressure drop for the CO2 

transport pipeline, considering both the obstructions in the pipeline path such as roads, 

bridges, rails and the insulation. It is claimed that to design an efficient CO2 transport pipeline 

network, the distance between the CO2 source and utilisation or storage site, network topology 

and CO2 transportation mode must be considered [16,24,32,140,143–145]. Several sources 

reported on the maximum distance before booster pump stations for repressurisation to both 

maintain the CO2 stream in a supercritical phase and minimise the power requirement 

[62,86,143,146–149]. 

Specific issues, such as the phase and the level of impurities of the transported CO2 stream, 

make it imperative to take into account the pipeline material, its specifications and pipeline 

code and standard. These considerations are important in the design and construction phase 

of the CO2 transport pipeline [26,84,142,150]. Critical among these specifications are the 

mechanical properties of the pipeline, such as its toughness and strength, which are directly 

related to its thickness. Moreover, selection of the proper material for CO2 transport in the 

pipeline under supercritical operating conditions is an important design aspect. Most of the 

past experience with material selection for the pipeline comes from the oil and gas industry, in 

which, however, the pipelines are operated at lower pressures [151]. However, little is known 

about the effect of impurities in the CO2 stream in combination with a high pressure, as 

encountered in CO2 transport. The MATTRAN project was commissioned to test metallic 

materials for CO2 pipeline transport [76], including X grade steel (X60, X70, and X100). The 

strength of the materials was tested under various impurities contents. Furthermore, Hashemi 

et al. [152] tested the mechanical properties of a number of metallic materials subjected to 
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corrosive environment and other non-corrosive degradation mechanisms that can be expected 

to occur in the CO2 transport pipeline.   

Micro-alloyed steel materials applied in the advanced CO2 transport pipeline projects are 

characterised by a high material strength. This is acquired through a suitable combination of 

thermal and mechanical treatment, as well as composition of the material resulting in its high 

quality. Consequently, a realistic balance between the toughness of the material and its 

strength was obtained. The grade of the steel used in the CO2 transport pipeline, which can 

vary from X60 to X120 (Table 4), indicates the minimum required toughness and strength of 

the material together with Charpy-V-notch (CVN) impact test results, which are applied to the 

toughness specification. 

Table 4: Mechanical properties of pipeline-grade steel  

Grade Yield  
strength  
(MPa)  

Tensile  
strength  
(MPa)  

Yield  
ratio 
(%)  
 

Elongation 
(%)  
 

CVN impact 
energy at 
0 °C (J) 

CVN impact  
energy at  
-50 °C (J) 
 

X60 461 553 83 21 194 187 

X80 550 658 84 20 211 200 

X100 690 780 88 25 212 197 

X120 827 931 89 28 287 231 

 

X100 was used to demonstrate a typical stress-strain curve (Figure 8). In the demonstration, 

stress of a round bar tensile specimen for the pipeline was measured to obtain the yield and 

tensile strengths in the circumferential direction, which were estimated to be 769 and 823 MPa, 

respectively [153]. This is in fulfilment of the X100 requirements as shown in Table 4.  
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 Figure 8:   A typical stress-strain plot for X100 steel (Reproduced from Hashemi et al.  

[153]. Copyright European Structural Integrity Society 2004) 

For large-scale exploitation, where CO2 is captured from different point sources and 

transported over long distances for storage, as shown in Figure 9, the most economical 

configuration of the CO2 transport pipeline network must be considered. Based on the 

experience from the oil and gas industry on the gas gathering networks, scenario C presented 

in Figure 9, which assumes that CO2 is transported via multiple diameter trunk lines, can be 

considered as the most credible and the least cost-intensive option [143]. It is claimed that in 

addition to being characterised by reduced pipeline oversizing, scenario C will have lower 

operating cost by ensuring that the right operating pressure is maintained throughout the 

pipeline. Therefore, development of the multiple-diameter trunk line is crucial to 

implementation of CO2 transport pipeline networks at a relevant scale [64,143,154]. 
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Figure 9:   Schematic of CO2 transport network configuration (A) with a single CO2 

source connected to a storage site; (B) linking multiple supplies to a trunk line (Part A) 

that then to a storage site (Part B); (C) with a multi-diameter trunk line connected to a 

storage site or a single-diameter trunk line connected to a storage site (Reproduced 

from Chandel et al. [143]. Copyright Elsevier 2010) 

Large-scale deployment of a CCS chain requires a reliable, safe and cost-efficient solution for 

transport of CO2 from the capture facility to the permanent storage site [146]. The goal is to 

develop a CO2 transport pipeline that will achieve the satisfactory performance level, while 

reducing the cost of CO2 transport to a level acceptable to the operators. 

3.2 Construction material  

3.2.1 Defect tolerance 

It is necessary to consider how the material selected for the CO2 transport pipeline will act in 

response to defects at the design stage [110,155]. Such defects could be in the form of ductile 

fracture propagation, highlighting the importance of pipeline toughness [125,155–162]. 

However, in the event that the pipeline material does not have adequate toughness to 

withstand or arrest ductile fracture propagation, there will be a requirement for crack arrestors 

to be installed (Figure 10).  
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Figure 10.  Crack repair using crack arrestors [163] 

Pipeline infrastructure life extension is a prevailing topic in the more mature oil and gas industry 

and this requirement should form part of the important considerations if reuse and/or 

repurposing of existing pipelines is adopted for CO2 transport [164]. 

3.2.2 Pipeline material fracture propagation 

Transport of CO2 via pipeline in the supercritical phase is a peculiar process. This is because, 

in the event of any leakage, liquid-to-gas expansion will occur as a result of the Joule-

Thompson effect. This will cause deep cooling of the body of the pipeline [165]. The situation 

may decrease the local toughness of the pipeline material, which could initiate a fracture. 

Furthermore, the fractured pipe may break and the abrupt expansion of the CO2 in the 

supercritical phase would result in a substantial driving force for fracture propagation. A 

momentum would impact on the broken part of the pipe resulting in a long propagation fracture, 

especially if the crack arrestors or design conditions were improperly selected [32,115]. For 

this reason, adequate attention should be given to the design process and the selection of the 

crack arrestor. 

3.3 CO2 pipeline corrosion protection  

3.3.1 Laboratory studies on the corrosive effect of impurities in CO2 

pipelines  

The importance of corrosion in the CO2 transport pipeline cannot be underestimated as it would 

affect the integrity of the pipeline infrastructure [166–169]. A number of studies have been 
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conducted on the subject of impurities and their corrosivity in the transport of CO2. It has been 

highlighted that the presence of free water in the CO2 stream transported via the pipeline 

should be avoided [74,111,123,124,170–175]. Some of those studies that evaluated the effects 

of H2O and other impurities on corrosion in different pipeline material are summarised in Table 

5. 

Table 5: Summary of studies evaluating the impact of impurities on the corrosion rates 

of the pipeline materials [176] 

Material Temperature 
(°C) 

Pressure 
(bar) 

Impurities Reference 

X63 steel, 13Cr 
Steel 

49.95 80 H2O, O2, SO2 Choi et al. [123] 

X63 steel 9.98-49.95 100 SO2, O2, H2O, Dugstad et al. 
[124] 

X70 steel 24 82 H2O, H2S, McGrail et al. 
[177] 

304 SS 265 93-165 Methanol Xiang et al. [176] 

304 L SS 46.85 241.38 Methanol 
Tetrahydrofurfuryl alcohol 

Russick et al. 
[178] 

X60 steel, AISI 
4140 steel 

3.3-22.22 138 H2O, H2S, Xiang et al. [176] 

Carbon steel 31 76 H2O, MEA Thodla et al. 
[162] 

There is a correlation between the moisture content in the CO2 stream and the rate at which 

the interior wall of the CO2 transport pipeline corrodes [123,173,176,179]. However, the 

research on the allowable level of free water in the CO2 stream that will not cause the pipeline 

corrosion is limited. There are are two views, one saying that the free water content should be 

limited to as low as 50 ppm, whilst the other indicating that, in the worst case scenario, it should 

not exceed 600 ppm as above this level corrosion of the pipeline material may occur [121]. In 

practice, some of these sources recommended that in the presence of a large quantity of SO2, 

lower levels of moisture must be considered [43,124,180]. SO2 naturally was noted to be more 

acidic when dissolved in water and could intensify the corrosion of the pipeline. 

In the same way, Ruhl and Kranzmann [181] reported that in an experiment carried out with 

CO2 containing SO2, NO2, O2 and H2O, the damage resulting from corrosion of the pipeline 

material increases with a decrease in temperature. It was further claimed that, in accordance 

with the Joule-Thompson effect, a reduction in the temperature occurs along with a drop in the 
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operating pressure or at a time of total depressurisation of parts of the pipeline. Furthermore, 

Ruhl and Kranzmann [181] conducted an experiment aimed at identifying critical conditions for 

severe corrosion in a continuous flow of CO2 containing SO2 at ambient pressure. The result 

showed that at a humidity level of about 1700 ppm with a SO2 concentration of 650 ppm, no 

significant corrosion of the material occurred at the time of contact with the continuous flow. 

Apart from the formation of carbonic acid in the aqueous phase, which reduces the pH and 

increases the risk of corrosion, a key challenge of CO2 transport via pipeline is the presence 

of impurities such as NOx, SOx, H2S that segregate to the aqueous phase. The segregated 

aqueous phase forms in situ sulphuric and nitric acids, which cause a further drop in the pH of 

the solution [170]. When analysing the effect of impurities on corrosion, it was estimated that 

in a worst-case scenario, the fluid pH could be as low as 3.2, attributed to carbonic acid alone. 

Likewise, in the event of formation of an isolated water-rich aqueous phase, CO2 saturates it, 

producing a pH of approximately 3. Choi et al. [123] gave a clear explanation (both theoretical 

and experimental) of the mutual solubility of H2O in CO2 as well as CO2 in H2O.  

The manner in which low pH impacts on the pipeline material can be predicted to a degree by 

the Pourbaix diagram for iron (Figure 11) [43,182]. The Pourbaix diagram is an illustration of a 

phase diagram outlining electrochemical stability for different redox states of an element. The 

water redox line (dotted) is important in the Pourbaix diagram for elements such as Fe. Water 

in liquid form is stable between the dotted lines. However, below the H2 line and above the O2 

line, liquid water is unstable relative to H2 and O2, respectively. An active metal such as Fe can 

only show stability below the H2 line.Therefore, metallic Fe displays instability when it gets in 

contact with water and undergoes some reactions. Under such conditions, these reactions 

occur irrespectively of the potential (V) and pH. 
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Figure 11: Pourbaix diagram for iron (Reproduced from Western Oregon University 

[183]. Copyright Western Oregon University 2013) 

3.3.2 Corrosion and pipeline design 

In the design and operation of CO2 transport pipelines, corrosion and material selection are of 

significant consideration [155,159,176,184,185]. Before material selection is carried out, it is 

necessary to identify the full stream composition together with the whole range of operating 

conditions that all the system equipment will be exposed to [70,109,175,186–189]. Again, 

consideration should be given to the steady state as well as the dynamic excursion situations 

such as shut-down, start-up, and upsets [117,190,191]. In CO2 pipeline transport, corrosion 

and corrosion mechanism considerations take into account: free water phase, CO2 corrosion 

and O2 corrosion of carbon steel, corrosion-resistant alloys, stress corrosion, hydrogen 

damage, liquid metal embrittlement and degradation of non-metallic parts [78,159,161,192]. 

3.3.3 Corrosion prevention procedures  

There are factors militating against CO2 pipeline corrosion prevention procedures and these 

include: lack of selective protection of low-grade carbon steel materials, absence of knowledge 

of application of correct metallurgy inhibitor test, inadequate correlation of surface monitoring 

procedures with internal rate of corrosion and negligence on the significance of complementing 

laboratory tests with field trials [129,169,182,193–201]. 

With the discovery of low-alloy steel (Cr steel), Guo et al. [174] maintained that the disparity 

between steel and corrosion-resistant alloy in terms of cost and corrosion resistance has been 

Pourbaix diagram for iron at 
ionic concentrations of 1.0 mM

Areas in the Pourbaix diagram mark
regions where a single
species (Fe2+(aq), Fe3O4(s), etc.) is
stable.
More stable species tend to occupy
larger areas

Lines mark places where two 
species exist in equilibrium

Pure redox reactions are horizontal lines 
these reactions are not pH-dependent

Pure acid-base reactions 
are vertical lines - these do not 
depend on potential

Reactions that are both acid-base and 
redox have a slope
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minimised. In a related development, ECD [120] looked at cost and resistivity when they 

studied the use of composite glass reinforcement plastic (GFK) or steel grade L485MB and 

concluded that steel was preferable because of lower capital expenditure, favourable results 

from corrosion tests and several references.  

In summary, the future CO2 transport pipeline will require intermingling of CO2 fluids from 

different sources; monitoring levels of impurity which may inadvertently lead to corrosion is 

important. The following questions needs to be addressed: 

 What is the best effective procedure to abate most avoidable corrosion cost (should be 

addressed at the conceptual phase)? 

 There is a need for further research to determine the effect of elevation on the fluid 

properties as a result of pressure drop, how the supercritical nature of the fluid is lost 

temporarily and how quickly this can recover. Again, at what height could the 

supercritical/dense nature fail to converge? 

Moreover, it is expected that as the CCS industry grows, more power plants and industrial 

operators will connect to an already installed trunk pipeline. This has an obvious economic 

advantage over point-to-point operations as shown in some of the demonstration projects. 

However, work is needed to develop a method of determining the optimum pipe diameter to 

avoid over-specification of pipe size in anticipation of future growth in a region.  

 

4 CO2 pipeline operations 

4.1 Energy analysis 

Energy losses result from the existence of impurities which affect the thermodynamics of the 

CO2 phase [202]. In an event following transport, depressurisation or fracture formation, 

involving rapid cooling, understanding the heat transfer characteristics of the CO2 transport 

pipeline is crucial [85,124,203–205]. It is essential to accurately understand and represent the 

correlation between the physical properties of the CO2 stream, such as temperature and 

pressure, expressed in terms of other physical-dependent properties including density, 

viscosity and thermal conductivity [46,94,109,206–208]. This is because there is a 

considerable phase difference between CO2 and other similar fluids such as natural gas 

transported through the pipeline. A direct link exists between the energy requirements and the 

operating pressure when considering supercritical fluid flow in CO2 pipeline transport. It has 

been shown that four major components of pressure drop, which include friction, acceleration, 
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local and gravitational, can be distinguished [208,209]. In the pipeline transport of CO2 in the 

supercritical phase, it is essential that the operating temperature is maintained at a desired 

level. If necessary, heaters and insulation need to be applied at some locations of the CO2 

transport pipeline to prevent hydrate formation. Loss of energy in the CO2 transport pipeline 

can be analysed by estimating the amount of heat transferred to the environment that is 

proportional to the heat transfer coefficient and the temperature difference between the pipe 

wall and the surrounding environment. Furthermore, in the CO2 transport pipeline, energy 

analysis should involve heat loss to the pipeline surroundings, depressurisation resulting from 

an accidental discharge, as well as planned maintenance. The energy drop along the pipeline 

is proportional to the length of the pipeline, though other factors such as the nature of the 

pipeline material, ambient temperature, and insulation, where applicable, need to be taken into 

account. Importantly, on an increase in the ambient temperature, the density of CO2 reduces, 

causing an increase in velocity of the fluid flow. As a result a pressure drop occurs. The 

implication of this is that further pressure drop results in higher operating costs [26]. 

Importantly, determination of the maximum safe CO2 pipeline distances to subsequent booster 

stations as a function of inlet pressure, environmental temperature, and ground heat transfer 

rate can be carried out by commercially available energy analyses [55,102].   

4.2 Power requirements for CO2 pipeline transport 

The specific energy requirement for CO2 pipeline transport depends on a number of factors, 

such as the inlet pressure, impurities content in the CO2 stream, pipe diameter and length, and 

heat transfer coefficient. Importantly, due to the pressure loss along the pipeline, the 

compression or pumping stations are required to maintain the CO2 stream in the supercritical 

phase. Therefore, both the cost and the energy requirement of the CO2 transport pipeline are 

expected to increase for the routes located in a difficult terrain of variable altitude.  Importantly, 

the total energy requirement for the CO2 transport pipeline comprises the power requirement 

to compress the CO2 stream to the pipeline inlet pressure and the power requirement for 

recompression of the CO2 stream to compensate for the pressure losses along the pipeline. 

The latter is not only influenced by the efficiency of the compressor, but primarily by the 

temperature of the pipeline environment and the thermal insulation layer, both of which affect 

the operating conditions of the CO2 transport pipeline [102,210]. Importantly, it has been shown 

that for a post-combustion CO2 capture, a 20% reduction in the compression power 

requirement can be achieved when the CO2 stream is only compressed to the critical pressure, 

under which it becomes a supercritical fluid, and then is pumped, as opposed to being further 

compressed, to the desired pipeline inlet pressure. In the same vein, there are different power 
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requirements for refrigerated and non-refrigerated compression strategies in comparsion to 

isothermal compression, which is assessed to be 30-40% higher [85,211]. 

4.3 Flow assurance 

4.3.1 CO2 pipeline transport flow assurance considerations 

Generally, flow assurance is dependent on many factors including the allowable level of 

impurities in the CO2 stream, the operating conditions of the CO2 transport pipeline (pressure 

and temperature), and the potential for hydrate formation [28,212]. In a flow assurance 

assessment, the dynamic or non-steady state is important. This is because by their nature, it 

is usually difficult to determine the frequency of occurrence of various operating states, such 

as shut-down and start-up [50,122,213]. Several sources have described these phenomena 

including an initial start-up, planned shut-down, planned start-up after planned shut-down, and 

planned start-up after non-planned shut-down emergencies [50,120,163,214–216]. These 

sources have developed some understanding on several conditions including temperature, 

pressure, density, and viscosity, among others that affect the flow assurance of the CO2 

transport pipeline.  

4.3.2 Recompression (start-up/shut-down) 

Operating the CO2 transport pipeline under a two-phase condition is not desirable, as this 

presents a particular difficulty during start-up. However, to overcome this difficulty, the CO2 

stream is initially compressed, and then recompressed along the pipeline, to a higher pressure 

than the nominal operating pressure. This not only affects the energy requirement, but also 

has an impact on the nominal operation pressure design for the CO2 transport pipeline 

[85,191,202,204,209,216,217]. Of equal significance is an operation under a long-lasting shut-

down and cool-down scenario, for example after weeks of low mass flow rate, increasing the 

flow rate becomes essential for a subsequent start-up procedure. Importantly, as mentioned 

above, recompression distance is dependent on the impurity content, as well as the pipeline 

diameter (Figure 12) [86,139]. If the presence of impurities is large, the CO2 transport pipeline 

will need to be operated at a higher pressure to sustain the supercritical phase 

[28,45,46,106,129]. 
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Figure 12. Relationship between recompression and impurity (Reproduced from Lucci 

et al. [41]. Copyright The International Society of Offshore and Polar Engineers 2011) 

4.3.3 Hydrate formation 

It is important to avoid hydrate formation in the CO2 transport pipeline. Operating away from 

the hydrate formation zone is essential to prevent the pipeline from blockage that will lead to 

a forced shut-down of the system and will increase the energy consumption required for 

subsequent start-up of the system. Following the results from the Dynamis project, at the 

temperature of approximately 10°C lower than the system operating condition, stringent free 

water content specification is required to prevent hydrate formation [106,111,126,218]. There 

is a possibility of hydrate formation when free water is present in a significant amount, and 

both temperature and pressure are in the hydrate formation zone (Figure 13). Nevertheless, 

hydrates may still be formed at a very low temperature, even though the amount of free water 

in the CO2 stream is negligible. In that instance, the hydrate curve will be moved further to the 

left (Figure 13). In this sense, transport of CO2 at a low temperature and a high pressure along 

a pipeline located on the sea bed increases the risk of hydrate formation [216,176].  
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Figure 13. CO2 hydrate curve with free water (Reproduced from Scottish Power CCS 

Consortium [219]. Copyright Scottish Power CCS Consortium 2011) 

Importantly, efforts are being made, especially at the demonstration stage, to compress and 

transport water-free CO2, but this may be difficult at the project implementation stage where 

the mixing of the CO2 streams from different sources is expected. Therefore, in terms of 

operational parameters, the specification of the drying condition of CO2 is important. Work is 

required to identify the free water content that is allowable under particular operating conditions 

and that would pose minimal corrosion issues in the CO2 transport pipeline  

4.4 Reliability and maintenance 

Reliability is the capability of an engineering system or a component to operate under a set of 

operating conditions for a specified period to produce a desired result. Based on this definition, 

a system or component can be described as unreliable when it can no longer maintain or 

operate under a specific set of operating conditions over time to produce a desired result. 

Therefore, measures need to be taken at the design stage to ensure that systems are made 

reliable over their useful life cycle.  

A necessary consideration of reliability, availability, maintainability and operability (RAMO) 

characteristics of the CO2 transport pipeline makes significant positive contribution to achieving 

reasonable economic life cycle costs [84,167,190,194,220–223]. Importantly, it has been 
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claimed that there is little experience to date on the actual behaviour of anthropogenic CO2 in 

the supercritical phase and this poses a number of challenges for the integrity, reliability, safety 

and cost-efficiency of the pipeline [123,170,173,189,224]. It is a common understanding within 

the industry that the CO2 transport pipeline network should be designed and developed within 

the remits of that of the oil and gas industry [32].  

The reliability and maintenance challenges should be mostly considered at the design phase 

of the CO2 transport pipeline. At this stage, it becomes imperative to resolve the challenges 

related to impurities content in the CO2 stream, material selection, corrosion and fracture 

prevention, as well as operation and maintenance of the entire system [124,221]. Reliable 

pipelines for CO2 transport will require a well organised maintenance culture. Furthermore, the 

current literature has emphasised the importance of reliable means of corrosion prediction that 

are necessary for the prevention of leakage, accidental discharge and loss of CO2 resulting 

from corrosion [84,129,188,222,225–227]. Finally, for effective control of CO2 pipeline integrity, 

a management regime is required and this incorporates, among a number of other aspects, 

selection of material, inspection and monitoring, maintenance, operation, corrosion mitigation, 

evaluation of risks together with the concept of communicating these risks [114,129,167–

169,193–196,220,223,224,228–232]. 

4.5 Environmental concerns of CO2 release and dispersion 

Transport of CO2 takes place under a high pressure and in a supercritical phase. 

Depressurisation of the system may occur as a result of pipeline failure or planned 

maintenance [115,233]. Loss of pressure can also occur due to the length and geometry of the 

CO2 transport pipeline. It have been shown that the maximum CO2 release rate from a faulty 

pipeline is estimated at a range of 0.001-22 ts-1  [78]. However, other studies have estimated 

this release rate at 8.5-15 ts-1. Importantly, these figures depend on the pipe diameter, 

puncture size and the level of impurities that may affect the CO2 stream phase, operating 

temperature and pressure, as well as on whether the CO2 release and dispersion is planned 

or accidental [78,102,190,224,234–236]. Furthermore, a change in the CO2 phase gives rise 

to dry ice formation in the pipeline surroundings that has an indirect effect on the concentration 

and impurities around the faulty pipeline [190,237].  
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Figure 14. Photographs of the instrumented target and of a release of CO2 through a 0.5 

inch orifice [142] 

An industrial-scale experiment on the release and dispersal of CO2 known as CO2PIPETRANS 

was conducted by BP and Shell (Figure 14). The data gathered from this experiment were 

used to validate simulations of CO2 release and dispersion [24,30,235,236,238]. From the 

material integrity viewpoint, it is necessary to have control of the rate of depressurisation, as 

too fast depressurisation can accelerate the temperature drop rate within the pipeline that can 

make the steel wall brittle [96,157,239]. 

4.6 Health and safety 

Economics do not favour transportation of a large amount of CO2 at a low pressure over a long 

distance. Therefore, transport of CO2 should be carried out at a high pressure and, as a 

consequence, this may pose some health and safety risks [3,17,24,41,78,117,134,137,240–

242]. In the assessment of environmental risks for the CO2 transport pipeline, ensuring the 

safe operation of the high-pressure pipeline has been identified as a major risk 

[24,105,115,196,227,243–245]. It has been indicated that an emergency planning zone (EPZ) 

around the pipeline, which requires detailed emergency response planning, needs to be 

considered at the design and planning stage [78,224,228,235,246]. 

4.6.1 Toxicity 

CO2 is known to be neither toxic when released in small quantities nor explosive. However, if 

the CO2 transport pipeline is accidentally ruptured, it can release a considerable amount of 

CO2 into the air that could pose harm to humans under particular circumstances. Considering 
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the fact that certain regions of the earth, such as the European Union, are characterised by a 

high population density and that some of the CO2 capture sites are located near cities, existing 

regulations should be strengthened to route high-pressure pipelines away from buildings and 

dwellings [24,41,110,115,190,224,227,238,244,247]. Moreover, care must be taken to 

significantly reduce the impurities content in the CO2 stream that can pose injury or harm to 

humans, such as H2S. In this sense, CO2 transport pipelines must be buried deep enough to 

prevent digging equipment from reaching them. Furthermore, crack arrestors should be fitted 

in CO2 pipelines and, for urban transit pipelines, a pressure release mechanism, such as a 

supervisory control and data acquisition (SCADA) system, should be fitted [24]. 

4.6.2 CO2 pipeline leakage 

Based on the experiences of the natural gas pipelines industry, failure rates associated with 

leaks for CO2 transport pipelines are estimated to range between 0.7 and 6.1X10-4 yr_1 km_1  

[108]. Most of the recorded failures to date were caused largely by third party interference, 

pipeline corrosion, material and construction defects, such as welds, and movement of ground 

or operator errors [102,115,167,190,224,229,237,248]. Leakage could also be a result of 

existing or induced defects, fractures, or along a spill position [235]. 

Currently, there are not enough empirical data and experience to accurately determine the 

likelihood of failure of CO2 transport pipelines, compared to natural gas pipelines. This is further 

complicated due to the presence of impurities in the CO2 stream [115,190]. When considering 

pressures for offshore and onshore pipelines, several authors maintained that the offshore 

CO2 transport pipeline route can be designed for higher pressure than the onshore (up to 300 

bars). This is because of reduced risks associated with the human population onshore 

[40,102,115,148,151,164,229,237,249] . 

 

5 Financing CO2 pipeline projects 

5.1 Estimated costs 

A cost estimation of the CO2 transport pipeline projects is important because this determines 

the feasibility of the project for the potential operators and investors. In general, for any long-

distance movement of products to occur, there must be an overwhelming economic incentive 

based on the demand, similarly to the case of the hydrocarbon production and transport chain. 

Importantly, this can also be applied to the transport of CO2 via pipelines. However, the value 

of CO2 is given on the basis of both environmental and societal needs for it to be stored, rather 
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than the monetary value of CO2 itself [21,24,164,242]. Furthermore, several sources claimed 

that the economics of scale are required to reduce the cost of CO2 transport via single large-

capacity pipelines [21,64,250–252].  This is important as it has been estimated that the CO2 

transport pipeline constitutes about 21% of the overall cost of a full-chain CCS project as 

shown in Table 6 [217]. The cost of a CO2 transport pipeline varies from one project to another 

and depends on the amount of CO2 to be transported, as well as the diameter and length, and 

material of the pipeline. Other important factors that affect the cost of CO2 transport are labour 

cost and expected system lifetime [3,15,21,67,154,242,253]. 

Table 6. Summary of estimated project cost at the end of Front End Engineering Design 

[217] 

Section Post-FEED (£million) 

Capture 1,656.5 (49%) 

Transport 281.2 (21%) 

Storage 207.8 (16%) 

Total 1,145.5 (85%) 

Risk & Contingency 194.8 (15%) 

Total Project Capex 1,340 (100%) 

Estimated Range 1,200 to 1,519 

5.2 Financing options and capital availability 

The CO2 transport infrastructure requires a large capital investment. As a result, governments 

are expected to play a leading role in financing the full-chain CCS projects. However, the 

opportunities on how the captured CO2 can be transported to the end users or to a location of 

its permanent storage can add value and create confidence in the process, and should be 

explored. Imporantly, captured CO2 can be utilised for EOR, as based on the significant 

experience in the USA where EOR has been applied for decades, and oil producers are willing 

to pay between $9 and $18 per tonne of CO2 supplied [254]. CO2 can also be applied in the 

extraction of methane from deep coal beds and in the cultivation of algae for biofuel production 
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[255]. All these utilisation opportunities, when properly exploited, add value to the CO2 pipeline 

transportation infrastructure development.  

Importantly, if CCS is designed to provide CO2 for EOR, the business case exists for such 

scenario as there is a potential revenue stream that supports a timely deployment of CCS. 

Furthermore, there are carbon tax incentives and added competitive advantages for 

companies that are perceived as environmentally friendly. In order to reduce costs, the design 

and operational experience from existing projects (Figure 15) need to be gathered and utilised 

to implement 2nd and 3rd generation CCS technologies in the near future. 

 

Figure 15: Actual and expected operation dates for large-scale CCS projects in the 

Operate, Execute and Define stages by industry and storage type (Reproduced fro 

Global CCS Institute [20]. Copyright Global CCS Institute 2014) 

5.3 Commercial risks 

Commercial risks related to the CO2 transfer pipelines as part of CCS chains could occur in 

scenarios such as scaling down, abandonment, late completion and total cancellation of 

projects. Presently, the most important limitations of the CCS chain are related to the capital 

cost of the infrastructure and the operational cost. Consequently, a substantial effort is being 

directed to cutting these costs by developing less energy-intensive processes and 

configurations. One of the ways utilised to achieve this target is application of reliable and 

accurate techno-economic models. However, the cost estimations from different models may 

vary by tens or hundreds of millions pounds at the Pre-FEED and FEED phase for the CO2 

transport pipeline projects [3,77]. Differences of this scale, which can arise from different 

assumptions behind and accuracy of the existing economic models, can introduce an 
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unwarranted uncertainty to the viability of the CO2 transport pipeline project. This effect can 

result in a misestimation of the actual costs of the project and, in turn, abandonment of the 

project. Table 7 shows the introduction of Aspen Process Economic Analyser© V8.8 (APEA), 

an industry standard tool used to accomplish CO2 pipeline cost estimation and economic 

analysis. This tool has been recognised to be far more accurate than factor-based costing 

methods. This model is built on the basis of regional construction cost information which is 

updated annually. To this effect, it is more reliable in cost estimation of CO2 pipelines in 

comparison to other models [3,77]. 

Furthermore, Table 7 reveals similarities between the most relevant techno-economics models 

reported by MIT, Ecofys, McCoy and Rubin, Ogden and the mathematical simulation tool, 

Aspen Process Economic Analyser [77]. These can be observed in the applied methods for 

estimation of the pipeline diameter, as well as operating and maintenance costs. However, 

there are differences in some factors, such as the terrain factor, friction factor and absolute 

roughness. Importantly, an accurate and reliable estimation of the project costs reduces the 

uncertainty and thus increases the confidence that the estimated values will be close to the 

actual project costs. Additionally, it has been highlighted that reducing the uncertainty would 

reduce in reduction of the project cost in the long run [3,66]. 
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Table 7 Comparison of techno-economic models (Adapted from Ghazi and Race [77]. 

Copyright American Society of Civil Engineers 2013) 

Model 

Components 

and 

Assumptions 

Techno-Economic Models 

MIT  Ecofys McCoy & 

Rubin 

Ogden IEA GHG 

PH4/6 

IEAGHG 

2005/2 

IEAGHG 

2005/3 

APEA© 

Hydraulic 

Basis for  

Diameter 

Calculations 

Darcy-

Weisbach 

Darcy-

Weisbach 

Mechanical 

Energy 

Balance 

Mechanical 

Energy 

Balance 

Darcy-

Weisbach 

Mass 

Flowrate 

Rule of 

thumb 

Mass Flowrate 

O&M Factor $3,100/km/a 2.3%/a of 

total 

capital 

cost 

$3,250/km/a 4.0%/a of 

total capital 

cost 

By 

equation 

31/2% of 

pipeline 

capital-

5% of 

booster 

capital 

21/2% of 

total 

capital 

cost 

3% of the total 

project cost 

Booster 

Station 

Calculation 

No No No No Available 

option 

Yes No Yes 

Plant 

Capacity 

Factor[%] 

80 - 75 - User 

specify 

90 - User Defined 

Friction 

Factor or 

Absolute 

Roughness 

–z [mm] 

~0.0033(Moody 

Chart) 

0.015-

0.0020 

(=4xf) 

c =0.0457 ~ 0.015 

(=4xf) 

- - System 

specified 

Terrain 

Factor 

- 1 by Table - 1.05-1.50 

(by 

terrain) 

1.05-

1.50 (by 

terrain) 

1.17 User Defined 

Location 

Factor 

- - by Table - 0.7-1.2 

(by 

location) 

- - User Defined 

Currency USD Euro USD USD USD Euro USD GBP 

Reference 

Cost Year 

1998 2005 2004 2001 2000 2000 2002 2014 

Capital 

Recovery 

Factor 

15 - 15 15 - - - - 

Discount 

Rate, i 

- 10 - - - 10 10 - 

Operational 

Life Time 

(yrs) 

- 25 30     25 

Cost of 

Electricity 

[/kwh] 

- - - - User 

specified 

₡0.04 - User Defined 

CO2 

Temperature 

[oC] 

25 10 12 4.44-37.78 - - - 20 

CO2 Density 

[kg/m3] 

884 800 - - 800 800 - System 

specified 

CO2 

Viscosity 

[Ns/m2]  

6.06x10-4 - - - - - - 5.5x10-4 
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Furthermore, it has been shown that the cost of a CO2 transport pipeline is significantly affected 

by its location [21,24,164,242]. Namely, it has been estimated that pipelines located in remote 

and sparsely populated regions would cost between 50-80% less, compared to pipelines 

located in highly populated areas  . Moreover, pipelines constructed offshore could be between 

40-70% more expensive than their onshore equivalent. This is because when considering 

offshore pipeline trajectory, the depth at which the pipelines are laid directly affects the cost.  

As indicated above, corrosion may have a significant impact on the feasibility of CO2 transport 

via pipelines. Jackman [256] has identified that the costs related to corrosion can be divided 

into avoidable and unavoidable. The former costs are those that can be reduced or eliminated 

by applying the proper and the most economical corrosion control system that is available at 

the time, especially by adhering to all the technical considerations. The latter costs are related 

to the effect of corrosion that, at the time of design, was not predictable based on the existing 

knowledge and available information [26,68,195,256,257]. In a review of the studies that 

estimated pipeline costs, Knoope et al.  [68] identified two major types of the capital cost 

models that are currently in use. These include models relating capital and operating costs of 

the CO2 transport pipeline to its diameter or the mass flow of the CO2 stream. Knoope, et al. 

[3] also reported that the Global CCS estimated the cost of transporting CO2 onshore over 100 

km at between 0.4 and 1.5 €2010./tCO2. The cost varies because of variation in a number of 

factors such as topographic conditions, geographical region, pipeline economic life, and 

interest rate through to the type of steel, type of coating insulation, as well as the type of 

compressor and intermediate pumps. Furthermore, several sources provided an insight into 

the cost-effective solutions for CO2 transport, which are especially important as it affects the 

economics of the comparative risks and opportunities related to developing point-to-point CO2 

pipelines or backbone pipeline networks [21,64,134,146].  

5.4 Reducing costs, EOR, use of existing infrastructure 

A reduction of the CO2 transport pipeline costs determines the commercial feasibility of CCS. 

One of the potential options to reduce these costs is utilisation of existing pipeline 

infrastructure, athough it potentially introduces significant design constraints on the CO2 

specifications and process conditions. In addition, utilising CO2 captured from fossil fuel power 

plants and industrial sources, rather than that from natural sources, for EOR will add value to 

the CCS chain. Over the years, the oil and gas industry have constructed an extensive pipeline 

network in both offshore and onshore locations, especially in the UK [164]. Similarly, Dooley 

et al. [29] reported that in the last 60 years, a substantial number of natural gas pipelines has 

been constructed in the US. These existing pipeline networks can be utilised for CO2 transport 
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as an interim solution, until new pipelines are constructed. However, there are some 

impediments that impose the requirement to alter the operation and maintenance processes 

of the existing oil and gas pipelines to make them suitable for CO2 transport [164]. Importantly, 

it has been indicated that the design pressure of the existing oil and gas pipelines (60-80 bar) 

is lower than that required for transport of CO2 (70-110 bar) [29,115,142,190]. Furthermore, 

the outstanding service lifetime of the existing pipeline networks is uncertain and must be 

determined on a case-by-case basis to evaluate the feasibility of their adaptation to CO2 

transport. This is essential because the internal corrosion and the outstanding fatigue life must 

be accounted for [164,169]. Moreover, most of the onshore pipelines are buried and require 

an appropriate revalidation, as well as an agreement with the current operator that will establish 

the time when these pipelines can to be re-employed for CO2 transport. A comprehensive 

impact assessment is required before implementing any design changes to an existing pipeline 

infrastructure to utilise it in the CCS chain. It is also recommended that the experience gained 

in the hydrocarbon pipeline routing should be applied with respect to CO2 pipelines. ISO 13623 

should be used when determining restrictions on pipelines that traverse highly populated sites 

[142].  

Uncertainty associated with the unexpected costs of CO2 transport pipelines can be reduced, 

or even avoided, when satisfactory modelling is carried out prior to the design and building of 

any pipeline network, especially of those that will traverse urban areas. This will help to identify 

and deal with the challenges that might arise during the deployment and operation stages of 

the pipeline system. Furthermore, crack modelling of the CO2 transport pipeline is essential to 

understand the potential risks associated with pipeline failure [82,258]  . 

In general, CO2 pipelines constructed in urban areas are more complex in nature because the 

planning, technical, safety and legal challenges must be resolved [258]. In contrast to this, 

when constructing CO2 pipelines offshore, experience gained from the oil and gas industry is 

very useful. For instance, the CO2 pipeline can follow the existing oil and gas pipeline trajectory. 

This helps to reduce cost and limit delays associated with planning procedures [164]. In the 

same vein, it has been reported that securing rights of way alongside known easements such 

as gas pipe will facilitate the establishment of new CO2 pipelines [259]. However, it was  

concluded that there are no technical barriers to pipeline networks in the long run, but there 

exist challenges in the design, procurement, management and the development of a business 

model for the CO2 transport infrastructure [227,260,261]. Nevertheless, one way in which CCS 

pipeline cost can be significantly reduced is by employing the economies of scale. This involves 

sharing a single CO2 transport and storage facility between different operators of individual 
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CO2 generation plants. A reduction in the transport and storage services costs can be achieved 

in this case because the cost for each unit capacity related to the construction and running of 

an individual large-capacity pipeline asset is less than those related to many, small capacity 

assets of the same aggregate capacity  [21,23,242,262,263].  

In summary, there is little or no driving force associated with rapid commercialisation of CCS 

other than the societal perception of the environment and for uses like EOR. Effort should be 

geared toward avoidance of commercial risks associated with CCS from demonstration to 

implementation. Therefore, developing a techno-economic framework that will broaden 

understanding of the outcome of CCS pipeline projects resulting from risks/uncertainties 

becomes necessary. 

 

6 Future directions 

6.1 Summary of findings 

In this review, gaps in knowledge and lack of certainties associated with CO2 transport as it 

affects properties, design, operations and financing have been identified and discussed in 

brief. It has been recognised that consideration for the impurities content in the CO2 

composition impurities stream requires a holistic approach which will support all previous work 

carried out mostly in mono-, binary- and ternary-based assessment. Furthermore, the review 

recognised that in a trunk-line-based CO2 pipeline transport system, streams with different 

impurities levels are expected to be compressed and transmitted transported through the 

pipeline. This, however, poses both corrosion and health and safety challenges, especially in 

densely populated regions. Further research is, therefore, required for the implementation of 

the composite fluid regime.    

In order to evaluate the correct pipeline length with some degree of certainty before the 

installation of the next booster station, the consequences of pressure drop caused by elevation 

along the pipeline route, using detailed simulation and experimental work are required to gain 

full knowledge of the behaviour of CO2 in the supercritical phase when it encounters a steep 

elevation. The simulations and experiments are expected to help to understand how likely it is 

for the CO2 stream to loss its supercritical state and whether this kind of upset can be reversed 

or not. A gap was also identified in the provision of data at the early project stages to model 

the pipeline trajectory to ascertain in full the impact of elevation of the pipeline fluid dynamics. 
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It was also identified that a gap exists in the early commencement of procedures to install, 

manage and run corrosion mitigation measures at the conceptual stage of the pipeline project. 

Free water presents an expensive problem in CO2 transport, both in terms of hydrate formation 

and its impact on corrosion rate on the inner wall of the pipeline. However, there is an 

uncertainty in the universal allowable free water content in the CO2 stream. 

This review also found that it is necessary to develop a techno-economic framework that will 

broaden the understanding of the outcome of CCS pipeline projects resulting from risks and 

uncertainties. Further, commercial deployment of CCS pipelines makes it imperative to 

evaluate the economics of CO2 transport considering multiple small- and single large-capacity 

pipelines early in the planning stages of the project to forestall commercial risks of 

abandonment of the project. Another important knowledge gap was in the pipeline over-

specification as a result of expected future use. This could be very expensive if it is not carried 

out satisfactorily. For this systematic review of key challenges of CO2 pipeline transport, 

important knowledge gaps identified are linked mostly to the technical aspects of CO2 pipeline 

transport, ranging from properties, design and operations to financing without delving into the 

regulatory and policy aspects of the CO2 transport. 

6.2    Discussion 

A number of commercial risks could lead to project cancellation, abandonment and commercial 

partners pulling out of the project. These can be avoided via comprehensive techno-economic 

assessments to minimise project uncertainty. This will ensure that most of the grey areas are 

adequately analysed prior to commencement of the project. In the techno-economic analysis, 

it is important to understand that, at the moment, a major driving force for CCS projects is 

EOR. Therefore, efforts should be made to locate the CCS projects where there are sufficient 

oil fields. A balance should be struck between generating a market situation for investment in 

CCS projects, while not causing the price of electricity to increase excessively. There should 

be a political will for carbon trading which will give incentives to CCS projects and initiate a 

move away from harvesting naturally occurring CO2 for EOR and replacing it with 

anthropogenic CO2.  

Regional cooperation is also necessary to reduce the cost of the CO2 transport pipeline 

infrastructure and maintenance. Development of regional CO2 pipeline transport with 

implementation of a technical and economic model helps to create a framework for initial 

decision making by the stakeholder, which influences project viability and inculcates 

confidence in the industry. This requires consideration of, among others, information on the 
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estimation of the number and location of the large industrial CO2 emitters in the region under 

consideration and, because CO2 will rarely be stored at the site of capture, transportation to a 

geologically suitable site or industrial utilisation location. The technical and economic 

requirements for transport of captured CO2 are determined by the distance and the location of 

the storage site, and need to consider the pipeline, ship, rail and truck as means of 

transportation. Amongst these means of transport, the pipeline has a further advantage over 

the others because it does not in most cases require interim storage. 

The CO2 pipeline infrastructure technical and economic framework considers, amongst other 

issues, the cost estimation of the CO2 transport pipeline. The cost estimation is calculated as 

a function of diameter, pipeline length and mass flow of the CO2 stream. This, in turn, 

determines the location for sequestration by the individual operators. However, the viability of 

a sequestration site and the decision by the operators in a region to transport via a direct 

pipeline or share a trunk line can lead to manifold differences in the implementation of CO2 

pipeline lengths and consequent cost differences. 

From the perspective of different fossil fuel power plants or other CO2 capture sources, higher 

variability in the CO2 pipeline costs may have huge consequences. For example, if the cost 

becomes excessive for an individual plant, it may lead to difficulties in financing the whole 

project. Some analysts are of the view that costs can be moderated in the future if the fossil 

fuel power plants can site their plants close to sequestration sites. However, consideration of 

the cost of electricity transmission may outweigh the cost of CO2 pipelines when construction 

costs are considered. 

To protect the material integrity of the CO2 transport pipeline, monitoring and control of the CO2 

stream regime must be implemented. Appropriately, the operators of the pipeline facility would 

specify an allowable stream composition with which the CO2 transport pipeline users have to 

comply for the injection of CO2. This will help to maintain a fluid composition standard and will 

ensure the proper operation of the system. Quality specification for CO2 transported in 

pipelines close to public areas has been reported as an important challenge that needs to be 

solved In order to limit the negative impact of impurities in the CO2 stream; thus, it is expected 

to comply with a specific recommendation. There are data available from the reviewed 

literature on the types of impurities present in the CO2 streams. Such studies involve mono-, 

binary- and ternary-impurities. However, the effect of the combined impurities associated with 

coal- and gas-fired power plants, or any other stationary installations producing flue gas from 

combustion of fossil fuels, have not been adequately reflected. Further experimental or 

computer-aided research to ascertain the complete effect of these impurities on the pipeline 
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hydraulics and thermodynamics is necessary. This will help in setting up a composition regime, 

thereby regulating the level of impurities in the transported CO2 stream that is a mixture of a 

number of streams from different CO2 capture sources.  

Arguably, the best time to incorporate the operation and maintenance of the CO2 pipeline 

infrastructure, which considers various issues that affect its integrity and falls under asset 

integrity management, is at the pipeline conceptual design phase. The CO2 pipeline integrity 

management conveys the reputation of an environmentally friendly operator who is keen on 

the safety of its employees. It also benefits the pipeline operators by ensuring that the efficiency 

of operation, as well as the return on the capital investment, are maximised. An effective asset 

integrity management plan will consider, among other issues, the impurities content in the CO2 

stream, flow assurance, material selection and corrosion. The CO2 transport pipeline is 

expected to adapt to variable flow rates of and impurities content in the CO2 stream. The latter 

has implications on corrosion, seals, coatings, gaskets and internal lining materials as well as 

integrity-critical and other safety issues. The effect of impurities content on the thermodynamic 

and transport properties of the transported CO2 must be considered when designing the 

pipeline capacity, compression and pumping power, and re-compression distance. 

Experience from the more developed oil and gas industry will be of advantage. This can be 

applied when considering the content of impurities in the CO2 stream, types of equipment, 

piping and fittings, together with the pressure, temperature and velocity that will determine the 

material selection. The heat and mass balances, description of equipment and the process 

flow scheme should be carried out in close collaboration between specialised corrosion and 

process engineers right from the beginnng of the project to minimise errors. Material selection 

is a critical aspect of the CO2 transport system because, if carried out properly, it will safeguard 

against potential failures and, at the same time, will minimise both capital and operating costs. 

In general, carbon steel is the most cost-effective material for CO2 pipeline transport, though 

the choice of a grade of carbon steel such API 5L X100, X70, etc., is guided by the level of 

impurities in the CO2 stream and the total allowable cost of the pipeline. During material 

selection, consideration should be given for the strength, corrosion resistance, and availability. 

Amongst these three issues, availability may be considered of the highest importance.  

Corrosion is important in the integrity management of the CO2 transport pipeline. An efficient 

corrosion management approach is to identify the potential for the corrosion occurence in all 

the lines and parts of the pipeline. This should then be followed by quantifying the corrosion 

rates. For general corrosion of the CO2 transport pipeline, a corrosion prediction model may 

be applied. However, to estimate the local corrosion rates, consideration of the corrosion risks 
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appears to be a more suitable approach. Once the potential corrosion for the entire system is 

identified, it becomes easier to select the material that will reduce the probability of corrosion 

occurrence and, at the same time, will minimise the economic burden. Importantly, the selected 

material should not have the quality of being susceptible to any of the localised corrosion 

phenomena identified. Evaluation of corrosion allowance with a suitable prediction model 

should be then carried out. The identification of the correct pipeline material should be followed 

by verification of the eventual recommendation such as post-weld heat treatment and hardness 

limitation for cracking. This verification could be carried out by using company reports, general 

standards and the opinion of other experienced engineers, and will consider how well or poorly 

the material performs under design pressure and temperature, and how long the material will 

stand before failure occurs. Also, compatibility with the external environment of the selected 

pipeline material is important. For example, consideration should be given to the impact of 

exposure of stainless steel in a marine environment that may suffer from chloride-induced 

stress cracking, or of carbon steel to the atmosphere or buried in the soil. Some of the external 

corrosion issues are commonly managed by application of appropriate paints and/or coatings. 

To make the right selection, one must consult the supplier’s recommendations or company 

standards. It is important to remember the issue of corrosion under insulation if thermal 

insulation is to be applied. 

Agreeing on the allowable level of free water in the CO2 stream is still a subject of debate. 

However, its presence in the CO2 stream is of the utmost importance  it can initiate the 

formation of different types of acid given the right conditions, including carbonic acid, which 

may affect the pipeline integrity. Therefore, adequate collaboration amongst researchers 

should be promoted and the field experience should be gathered for knowledge generation. 

For example, the corrosion rates resulting from laboratory tests should be reflected in an 

appropriate selection of the pipeline material.  

The trajectory of the CO2 transport pipeline is highly dependent on the terrain characteristics. 

Importantly, the effect of sharp elevation changes, which may cause the CO2 stream to go 

below the minimum pressure that maintains the dense phase, must be considered at the 

pipeline design stage. This is because two-phase flow may occur that will initiate the separation 

of impurities. As this phenomenon is not yet fully undestood, further research needs to be 

conducted in this area. 

Elevated expectancy of the amount of CO2 to be transported via the pipeline at the inception 

of a project would result in oversizing of the pipelines and is an important aspect that needs to 

be considered at the pipeline design stage. If the pipeline diameter is increased by a factor of 
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two, it will be able to accommodate the CO2 stream flow increased by a factor of four [165]. 

When considering oversizing the CO2 transport pipeline, care must be taken to reliabliy assess 

the amount of CO2 to be transported via the pipeline to avoid its underutilisation. It can be 

expected that the economies of scale will reduce the cost associated with the development of 

the CO2 transport pipeline networks and storage clusters, and these need to be cautiously 

aligned with the CO2 capture investments. 

An effective CO2 pipeline infrastructure technical and economic framework should consider 

carefully the routing of the pipeline from the point of capture to the location of sequestration. 

This will involve getting approval from regulatory bodies as well as securing the right of way 

from landowners. As these are not always easy to obtain, consideration should be given to 

securing the right of way alongside existing pipeline infrastructure such as a gas pipeline.         

In summary, developments in CO2 pipeline technology help in accelerating the 

commercialisation of CO2 transport pipeline projects, and addressing the gaps identified in this 

work is important in obtaining the FEED decision. The time it presently takes from the 

demonstration phase to implementation of CCS projects will be shortened. It will also enhance 

the commercialisation of CCS by generating a market situation for investment in CCS projects. 

 

7 Conclusion      

This review aimed to ascertain whether certain crucial technical and economic knowledge, on 

issues that may hinder CO2 pipeline transport project implementation, is lacking in the 

literature. The challenges of CO2 transport via pipeline such as integrity, flow assurance, 

capital and operating costs, and health, safety and environmental (HSE) concerns were 

reviewd and discussed. The most relevant techno-economics models such as MIT, Ecofys, 

McCoy and Rubin, and Ogden were compared to a mathematical simulation tool, Aspen 

Process Economic Analyser. Similarities were found in the areas of hydraulic basis for 

diameter calculations and operation and maintenance, while there were differences in the  

terrain and friction factor or absolute roughness assumptions. The review equally highlighted 

the need for impurities, corrosion and pipeline intergrity management systems. 

The review scope included assessment of major issues related to CO2 transport, identification 

of knowledge gaps and the outlook for the CO2 transport system after those gaps have been 

addressed. In order to bridge these gaps, which will reduce the uncertainties associated with 

CO2 pipeline transport, it is useful for further research to be conducted into the effects of 

elevation and impurities on pressure drop along the pipeline which influences the length of the 
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pipeline before the next compressor or pumping station. Similarly, detailed analysis of 

corrosion impact and mitigation measures should be carried out at the conceptual phase to 

reduce the avoidable cost associated with corrosion during the operation and maintenance 

phase. 

Active collaborations between research endeavours and field operators, especially in the 

determination of permissible water content in transported CO2, is necessary. While actual 

research on CO2 transport challenges is concentrated in some specific regions of the world, 

its implementation is globally disposed of. Therefore, there is a need to overcome the issues 

that prevent active research collaboration and project implementation. Some of the challenges 

that hinder an effective dissemination of research findings can be addressed through the use 

of information technology to improve communication amongst all the parties involved. 

Furthermore, an effective collaboration in terms of implementation of CO2 pipeline research 

tests can be enhanced by considering the three levels of input involved in the implementation 

of this research. These include the corporate aspect of implementation which considers system 

engineering and development of key component innovation. This can be followed by 

manufacturing implementation which looks at incremental product improvement, and then field 

engineering which considers customised solutions.   
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